Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Virol Sin ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677713

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. In this study, we detected accessory protein-specific antibodies in COVID-19 patients' sera using various techniques, including Luciferase Immunoprecipitation System (LIPS), Immunofluorescence assay (IFA), and Western blot (WB). Proteins 3a, 3b, 7b, 8 and 9c specific antibodies can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. And antibodies against protein 3a and 7b only detected in ICU patients, which may serve as a marker for predicting the disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for the protein detection assays and their role in pathogenesis.

2.
Cell Rep ; 43(1): 113653, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175758

RESUMO

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
3.
Medicine (Baltimore) ; 103(3): e37031, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241544

RESUMO

The prognostic value of preoperative white blood cell to hemoglobin ratio (WHR) and fibrinogen to albumin ratio (FAR) in colorectal cancer (CRC) is unknown. The purpose of this study was to analyze the correlation between preoperative WHR and FAR and the prognosis of CRC patients. The retrospective study analyzed the medical records of 207 patients with colorectal cancer who were admitted to Linyi People's Hospital between June 1, 2017 and June 1, 2021. The receiver operator curve was used to determine the cutoff value of 4.604 for WHR and 0.086 for FAR, and the patients were divided into high and low groups for comparative analysis of clinical data. Cox proportional hazards regression models were used to assess independent risk factors for disease-free survival (DFS) and overall survival (OS) in univariate and multifactorial analyses. Kaplan-Meier methods were used for survival analysis and logrank tests were used to assess survival differences. Multifactorial Cox analysis showed that tumor pathological stage (HR = 6.224, 95% CI:3.063-12.647, P < .001), and WHR (HR = 3.681, 95% CI:1.768-7.401, P < .001) were the independent risk factors for DFS in CRC patients. Tumor pathological stage (HR = 4.080, 95% CI:1.992-8.360, P < .001), and WHR (HR = 3.397, 95% CI:1.662-6.940, P = .001) were independent risk factors for OS. High levels of WHR and high levels of FAR were associated with lower DFS (P < .001) and OS (P < .001).CRC patients with both higher WHR and FAR had significantly lower DFS (P < .001) and OS (P < .001). DFS and OS may be shorter in CRC patients with high WHR and high FAR, perhaps associated with poor prognosis in CRC patients, and WHR and FAR may be potential CRC prognostic markers.


Assuntos
Neoplasias Colorretais , Leucócitos , Humanos , Prognóstico , Estadiamento de Neoplasias , Estudos Retrospectivos , Leucócitos/patologia , Fibrinogênio/análise , Albuminas
4.
Nat Commun ; 15(1): 842, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287016

RESUMO

The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.


Assuntos
COVID-19 , Feminino , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
5.
Adv Sci (Weinh) ; 11(9): e2303366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105421

RESUMO

To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Nanopartículas , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , SARS-CoV-2 , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Modelos Animais
6.
Virology ; 589: 109925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984151

RESUMO

SARS-CoV-2 and its variants continue to threaten public health. Nanobodies that block the attachment of the RBD to host cell angiotensin-converting enzyme 2 (ACE2) represent promising drug candidates. In this study, we reported the identification and structural biological characterization of a nanobody from a RBD-immunized alpaca. The nanobody, termed as 2S-1-19, shows outstanding neutralizing activity against both pseudotyped and authentic SARS-CoV-2 viruses. The crystal structure of 2S-1-19 bound to SARS-CoV-2 RBD reveals an epitope that overlaps with the binding site for ACE2. We also showed that 2S-1-19 reserves promising, though compromised, neutralizing activity against the Delta variant and that the trivalent form of 2S-1-19 remarkably increases its neutralizing capacity. Despite this, neither the monomeric or trimeric 2S-1-19 could neutralize the Omicron BA.1.1 variant, possibility due to the E484A and Q493K mutations found within this virus variant. These data provide insights into immune evasion caused by SARS-CoV-2 variants.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
7.
MedComm (2020) ; 4(6): e397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37901798

RESUMO

SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.

9.
Microbiol Spectr ; 11(4): e0110023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395664

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Modelos Animais de Doenças
10.
Nat Commun ; 14(1): 2179, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069158

RESUMO

A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Animais , Camundongos , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Monoclonais , Anticorpos Neutralizantes , Camundongos Transgênicos , Vacinas de Produtos Inativados , Anticorpos Antivirais
11.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059908

RESUMO

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Livres/genética
12.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652473

RESUMO

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Assuntos
COVID-19 , Resfriado Comum , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animais , Camundongos , Idoso , SARS-CoV-2 , Proteção Cruzada
13.
Environ Geochem Health ; 45(5): 1461-1474, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35499791

RESUMO

Currently, there is a lack of studies on microplastic pollution in mountain terrains and foothills areas in Northwest China and Central Asia. Here, we collected monthly dusts samples for one year and we studied the distribution, pollution levels, and sources of microplastics in atmospheric dust fall in the Ebinur Lake Basin in Northwest China. Results showed that the average content of dust microplastic on construction land was 28.61 ± 1.13 mg/kg, followed by farmland (20.25 ± 1.56 mg/kg), forest (19.52 ± 1.06 mg/kg), and deserts (8.08 ± 0.56 mg/kg). Regarding different land use types, atmospheric dust reduction dominated on farmland (58.64%), followed by urban area (26.65%), forest (9.76%), and desert (4.95%). Regarding the shape of microplastics, the order of occurrence in dust was film (46.85%) > fiber (35.15%) > foam(12.35%) > fragment (5.65%). In this study, four colors of microplastics were found in dust, and white accounted for the largest proportion (52.15%), followed by transparent (18.65%), black (19.45%), and green (9.75%). The main components of film microplastics in atmospheric dustfall in the Ebinur Lake Basin were PE and PP, and their sources were mainly plastic products in daily life, plastic industrial packaging materials from urban enterprises, broken plastic woven bags, and PET mostly from fabric fragment emissions. The abundance of microplastics in dust was correlated with atmospheric dust pH, EC, and total salt content. The contents of seven heavy metals (Cu, Ni, Cd, Pb, Cr, Mn, and Co) adsorbed by microplastics were also correlated with pH, EC, and total salt content. Our results represent a reference for microplastics pollution prevention in mountain terrains and foothills areas in northwest China and Central Asia.


Assuntos
Poeira , Metais Pesados , Poeira/análise , Microplásticos , Plásticos , Lagos/química , Metais Pesados/análise , China , Monitoramento Ambiental/métodos
15.
Front Immunol ; 13: 819058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529866

RESUMO

Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , Camundongos SCID , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
16.
Genome Res ; 32(2): 228-241, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35064006

RESUMO

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , RNA/sangue , COVID-19/sangue , COVID-19/genética , Ácidos Nucleicos Livres/sangue , Síndrome da Liberação de Citocina , Humanos , SARS-CoV-2
17.
ACS Omega ; 7(51): 48416-48426, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591160

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19, posing a huge threat to public health. The SARS-CoV-2 papain-like cysteine protease (PLpro) plays a significant role in virus replication and host immune regulation, which is a promising antiviral drug target. Several potential inhibitors have been identified in vitro. However, the detailed mechanism of action and structure-activity relationship require further studies. Here, we investigated the structure-activity relationships of the series of derivatives of tanshinone IIA sulfonate sodium (TSS) and chloroxine based on biochemical analysis and molecular dynamics simulation. We found that compound 7, a derivative of chloroxine, can disrupt PLpro-ISG15 interaction and exhibits an antiviral effect for SARS-CoV-2 variants (wild type, delta, and omicron) at the low micromolar level. These studies confirmed that inhibiting PLpro-ISG15 interaction and, thus, restoring the host's innate immunity are effective methods for fighting against viral infection.

18.
Ther Apher Dial ; 26(1): 71-84, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34038022

RESUMO

Cardiovascular diseases (CVD) are common in maintenance hemodialysis (MHD) patients, and vascular calcification is associated with the incidence of CVD. Malnourished MHD patients are particularly prone to CVD events. Thus far, there is no clear explanation for the relationship of nutrition status with vascular calcification; therefore, we investigated the relationship between malnutrition and vascular calcification. One hundred thirty-one patients underwent laboratory testing, assessment of vascular calcification, modified quantitative subjective global assessment (MQSGA), bioelectrical impedance analysis (BIA), and anthropometric measurements. The patients were divided into two groups based on the presence or absence of coronary artery calcification (CAC), and nutritional statuses were compared between the two groups. The MQSGA score was higher in the CAC group (mean 10.9 ± 1.81) than in the no-CAC group (mean 10.2 ± 1.51); in addition, the mean phase angle (PA) value was significantly lower in the CAC group than in the no-CAC group. Stratification according to CAC score showed that age, Kt/V, incidence of valve calcification, incidence of abdominal aortic calcification, MQSGA score, and blood cell mass were related to the severity of CAC. In addition, quartile analysis revealed that MQSGA score and PA value were related to the incidence and severity of vascular calcification. Binary regression analysis showed that MQSGA score, age, hemoglobin level, and high-density lipoprotein level were independent risk factors for dialysis-related CAC. Patients on MHD who exhibited malnutrition were more likely to have vascular calcification, especially CAC. Namely, the higher the MQSGA score, the lower the PA, and the more likely the occurrence of CAC.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Desnutrição/epidemiologia , Diálise Renal/métodos , Calcificação Vascular/epidemiologia , Adulto , Idoso , China/epidemiologia , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Fatores de Risco , Adulto Jovem
19.
Emerg Microbes Infect ; 11(1): 168-171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34907853

RESUMO

HCoV-OC43 is one of the mildly pathogenic coronaviruses with high infection rates in common population. Here, 43 HCoV-OC43 related cases with pneumonia were reported, corresponding genomes of HCoV-OC43 were obtained. Phylogenetic analyses based on complete genome, orf1ab and spike genes revealed that two novel genotypes of HCoV-OC43 have emerged in China. Obvious recombinant events also can be detected in the analysis of the evolutionary dynamics of novel HCoV-OC43 genotypes. Estimated divergence time analysis indicated that the two novel genotypes had apparently independent evolutionary routes. Efforts should be conducted for further investigation of genomic diversity and evolution analysis of mildly pathogenic coronaviruses.


Assuntos
Resfriado Comum/epidemiologia , Infecções por Coronavirus/epidemiologia , Coronavirus Humano OC43/genética , Genoma Viral , Genótipo , Pneumonia Viral/epidemiologia , Sequência de Bases , Teorema de Bayes , Criança , Criança Hospitalizada , Pré-Escolar , China/epidemiologia , Resfriado Comum/patologia , Resfriado Comum/transmissão , Resfriado Comum/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/classificação , Coronavirus Humano OC43/patogenicidade , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Masculino , Método de Monte Carlo , Mutação , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética
20.
J Cell Mol Med ; 26(2): 507-514, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889045

RESUMO

Lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (SA-AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA-AKI in vivo and in vitro, respectively. Medium- and high-dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll-like receptor 4 (TLR4)/myeloid differential protein-88 (MyD88)/nuclear factor-kappa (NF-κB) signalling pathway was also dramatically inhibited by medium- and high-dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS-induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS-induced SA-AKI.


Assuntos
Injúria Renal Aguda , Receptor 4 Toll-Like , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Tacrolimo/farmacologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA